Characterization of unconventional MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice.
نویسندگان
چکیده
Deafness is the most common form of sensory impairment in humans. Mutations in unconventional myosins have been found to cause deafness in humans and mice. The mouse recessive deafness mutation, Snell's waltzer, contains an intragenic deletion in an unconventional myosin, myosin VI (locus designation, Myo6). The requirement for Myo6 for proper hearing in mice makes this gene an excellent candidate for a human deafness disorder. Here we report the cloning and characterization of the human unconventional myosin VI (locus designation, MYO6) cDNA. The MYO6 gene maps to human chromosome 6q13. The isolation of the human gene makes it now possible to determine if mutations in MYO6 contribute to the pathogenesis of deafness in the human population.
منابع مشابه
Phenotypic and expression analysis of a novel spontaneous myosin VI null mutant mouse.
In humans, hearing is a major factor in quality of life. Mouse models are important tools for the discovery of genes responsible for genetic hearing loss, often enabling analysis of the processes that regulate the onset of deafness in humans. Thus far, at least 400 deafness mutants have been discovered in laboratory mouse populations and used in the study of deafness. Here we report the discove...
متن کاملPii: S0378-1119(00)00535-7
Mutations in myosin VI (Myo6) cause deafness and vestibular dysfunction in Snell's waltzer mice. Mutations in two other unconventional myosins cause deafness in both humans and mice, making myosin VI an attractive candidate for human deafness. In this report, we re®ned the map position of human myosin VI (MYO6) by radiation hybrid mapping and characterized the genomic structure of myosin VI. Hu...
متن کاملThe acquisition of mechano‐electrical transducer current adaptation in auditory hair cells requires myosin VI
KEY POINTS The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best ...
متن کاملUnconventional myosins and the genetics of hearing loss.
Mutations of the unconventional myosins genes encoding myosin VI, myosin VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions in the auditory system. A null mutation in myosin VI in the congenitally deaf Snell's waltzer mice (Myo6(sv)) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birth, thus rei...
متن کاملMyosin VI is required for the proper maturation and function of inner hair cell ribbon synapses.
The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 6 8 شماره
صفحات -
تاریخ انتشار 1997